[1]赵光华.二氧化碳扩散系数的实验研究和模型计算[J].复杂油气藏,2018,(03):55.[doi:10.16181/j.cnki.fzyqc.2018.03.012]
 ZHAO Guanghua.Experimental studies and modeling calculation ofcarbon dioxide diffusion coefficients[J].Complex Hydrocarbon Reservoirs,2018,(03):55.[doi:10.16181/j.cnki.fzyqc.2018.03.012]
点击复制

二氧化碳扩散系数的实验研究和模型计算()
分享到:

《复杂油气藏》[ISSN:1674-4667/CN:31-2019/TQ]

卷:
期数:
2018年03期
页码:
55
栏目:
油气开发
出版日期:
2018-09-25

文章信息/Info

Title:
Experimental studies and modeling calculation ofcarbon dioxide diffusion coefficients
作者:
赵光华
长城钻探工程技术研究院,辽宁 盘锦 124001
Author(s):
ZHAO Guanghua
GWDC Drilling Engineering and Technology Research Institute, Panjin 124001, China
关键词:
二氧化碳 扩散系数 传质系数 界面张力
Keywords:
carbon dioxide diffusion coefficient mass-transfer coefficient interfacial tension
分类号:
TE357.4
DOI:
10.16181/j.cnki.fzyqc.2018.03.012
文献标志码:
A
摘要:
采用动态界面张力法研究二氧化碳(CO2)在中原油田胡12块轻质原油的传质速率问题。实验中原油-CO2体系的动态和平衡界面张力通过悬滴法测定。理论上,建立一个数学模型得到任何时间下的动态界面张力。目标函数用来表示不同时间理论计算和实验测得的动态界面张力的均方根相对误差。CO2扩散系数和传质Biot数作为适当的参数,当目标函数最小化时,就能确定扩散系数和传质Biot数。由数值模拟得出:300.15 K,0.5~4.1 MPa下,CO2在原油的扩散系数、传质Biot数和界面传质系数分别为(0.45~4.61)×10-9 m2/s,2.5~7.1和(0.85~8.33)×10-5 m/s,模型计算与实验测得动态界面张力的均方根相对误差低于1.81%。
Abstract:
The dynamic interfacial tension method has been applied to study the mass transfer rate of CO2 in Hu 12 block light crude oil of Zhongyuan Oilfield. The dynamic and equilibrium interfacial tensions are measured by pendant drop method. Theoretically, a mathematical model is formulated to obtain the dynamic interfacial tension at any time. Subsequently, an objective function is constructed to express the root mean square relative error between the numerically calculated and the experimentally measured dynamic interfacial tensions at different times. The CO2 diffusion coefficient and mass-transfer Biot number are used as parameters and then determined once the minimum objective function is achieved. From numerical simulation, the diffusion coefficient, the mass-transfer Biot number, and the interface mass-transfer coefficient of CO2 in crude oil at 300.15 K and 0.5~4.1 MPa are( 0.45~4.61)×10-9 m2/s,2.5~7.1,and(0.85~8.33)×10-5 m/s, respectively. The root mean square relative errors of dynamic interfacial tensions between model calculation and experimental determination are less than 1.81%

参考文献/References:

[1] 杨胜来,郎兆新. 影响CO2吞吐采油效果的若干因素研究[J]. 西安石油大学学报(自然科学版),2002,17(1):32-34.
[2] 任韶然,于洪敏,左景栾,等. 中原油田空气泡沫调驱提高采收率技术[J]. 石油学报,2009,30(3):413-416.
[3] DO H D,PINCZEWKI W V. Diffusion-controlled swelling of reservoir oil by indirect contact with injection gas[J]. Chemical Engineering Science,1993,48(18):3243-3252.
[4] BIJELJIC B,MUGGERIDGE A H,Blunt M J. Multi-component mass transfer across water films during hydrocarbon gas injection[J].Cemical Engineering Science,2003,58(11):2377-2388.
[5] 刘一江,刘积松,黄忠桥,等. 聚合物和二氧化碳驱油技术[M]. 北京:中国石化出版社,2001:94.
[6] SIGMUND P M. Prediction of molecular diffusion at reservoir conditions,part Ⅰ-measurement and prediction of binary dense gas diffusion coefficients[J]. Journal of Canadian Petroleum Technology,1976,15(2):1-7.
[7] WEN Y,BRYAN J,KANTZAS A. Estimation of diffusion coefficients in bitumen solvent mixtures as derived from low field NMR spectra[J]. Journal of Canadian Petroleum Technology,2005,44:4.
[8] FU B C H,PHILLIPS C R. New technique for determination of diffusivities of volatile hydrocarbons in semi-solid bitumen[J]. Fuel,1979,58(8):557-560.
[9] RENNER T A. Measurement and correlation of diffusion coefficients for CO2 and rich-gas applications[J]. SPE Reservoir Engineering,1978,3(2):517-523.
[10] YU C S L. The time-dependent diffusion of CO2 in n-hexadecane at elevated pressures[D]. Canada Calgary: University of Calgary,1984
[11] BIJELJIC B,MUGGERIDGE A H,BLUNT M J. Multi-component mass transfer across water films during hydrocarbon gas injection [J]. Chemical Engineering Science,2003,58(11):2377-2388.
[12] YANG C D,GU Y A. A new method for measuring solvent diffusion coefficient in heavy oil by dynamic pendant drop shape analysis(DPDSA)[J]. SPE Journal,2006,11(1):48-57
[13] YANG C D,GU Y A. New experimental method for measuring gas diffusion coefficient in heavy oil by dynamic pendent drop volume analysis(DPDVA)[J]. Industrial & Engineering Chemistry Research,2005,44(12):4474-4483.
[14] GHEZ R. Diffusion phenomena:cases and studies [M]. New York: Kluwer Academic & Plenum Publishers,2001.
[15] CIVAN F,RASMUSSEN M L. Improved measurement of gas diffusivity for miscible gas flooding under nonequlibrium and equilibrium condition [C]. Paper SPE 75135,Proceeding of SPE/DOE Improved Oil Recovery Symposium,Tulsa,OK,2002.
[16] YANG D Y. Interfacial interactions of the crude oil-reservoir brine-reservoir rock systems with dissolution of CO2 under reservoir conditions[D]. Canada Regina: University of Regina, 2005.
[17] HANSEN R S,WALLACE T C. The kinetics of adsorption of organic acid at the water-air interface [J]. Journal of Physical Chemistry,1959,63:1085.
[18] SIMON R,GRAUE D J. Generalized correlations for predicting solubility,swelling and viscosity behavior of CO2-crude oil system[J]. Journal of Petroleum Technology,1965,17(1):102-106.
[19] LI S L,SUN C Y,LIU B,et al. Initial thickness measurements and insights into crystal growth of methane hydrate film[J]. AIChE Journal,2013,56(6):2145-2154.
[20] ANDREAS J H,HAUSER E A,TUCKER W B. Boundary tension by pendant drops[J]. Journal of Physical Chemical,1938,42(8):1001-1019.

备注/Memo

备注/Memo:
收稿日期:2018- 06-14; 改回日期:2018-07-13。
作者简介:赵光华(1986—),硕士,工程师,主要从事油田开发工作 。E-mail: zhaoguanghua-1986@163.com。
基金项目::二氧化碳化学冷采降粘技术研究与应用(长城公司科技项目GWDC201802-10)。
更新日期/Last Update: 2018-09-25