[1]汪 跃,刘洪洲,李宏远,等.基于地质因素控制的低阻油层成因分析及识别方法[J].复杂油气藏,2019,12(01):44.[doi:10.16181/j.cnki.fzyqc.2019.01.009]
 WANG Yue,LIU Hongzhou,LI Hongyuan,et al.Genesis analysis and identification method of low-resistivity reservoir based on geological factors[J].Complex Hydrocarbon Reservoirs,2019,12(01):44.[doi:10.16181/j.cnki.fzyqc.2019.01.009]
点击复制

基于地质因素控制的低阻油层成因分析及识别方法()
分享到:

《复杂油气藏》[ISSN:1674-4667/CN:31-2019/TQ]

卷:
12
期数:
2019年01期
页码:
44
栏目:
油气开发
出版日期:
2019-03-25

文章信息/Info

Title:
Genesis analysis and identification method of low-resistivity reservoir based on geological factors
作者:
汪 跃刘洪洲李宏远石 鹏谢 岳
中海石油(中国)有限公司天津分公司 天津 300459
Author(s):
WANG Yue LIU Hongzhou LI Hongyuan SHI Peng XIE Yue
Tianjin Branch of CNOOC Ltd.,Tianjin 300459,China
关键词:
低阻油层 识别方法 老油田挖潜 电阻率正演 定量判断
Keywords:
low resistivity reservoir identification method tapping potential in mature oilfield resistivity forward modeling quantitative judgment
分类号:
TE321
DOI:
10.16181/j.cnki.fzyqc.2019.01.009
文献标志码:
A
摘要:
低阻油层已成为渤海油田渤西油田群增储上产的主力储层之一。通过老油田挖潜,发现存在两类低阻油层:一类是与标准油层比,储层物性相对较差; 另一类是与标准油层比,储层物性相当甚至更好,但电阻率比标准油层低很多。针对老油田非主力层位录取资料少,常规方法无法识别低阻油层,通过储层与流体的双重作用正演电阻率,建立了电阻率曲线形态识别低阻油层的图版; 利用毛管压力公式计算原始油藏中油水同层厚度,定量判断低阻油层潜力。通过以上技术,在低阻油层中挖潜出一个中型油田,实现了老油田的高效开发。
Abstract:
The low-resistivity reservoir has become one of main reservoirs of Boxi Oilfield group increasing reserves and production in Bohai Oilfield. Through tapping potential of mature oilfields, it was found two types of low-resistance reservoirs: one was relatively poor physical property of reservoir to the standard oil-layer, and the other was comparable or better, but the resistivity was much lower than standard reservoir. In view of the lack of geological data and conventional methods for identifying low resistivity reservoirs for non-main strata of mature oilfield,the resistivity curve chart for identifying the low-resistivity reservoir has qualitatively been established by applying the technique of resistivity forward with the dual function of reservoir and fluid. Through calculating the thickness of oil and water layer in the initial reservoir with capillary pressure,the potential of the low resistivity reservoir has quantitatively been discriminated. Based on the above techniques,the proven reserves of nearly 1 000×104 m3 has been increased,with the recoverable reserves of about 140×104 m3, in other words, a medium-size oilfield was developed in an old oilfield, realizing high-efficient development of old oilfield.

参考文献/References:

[1] 何仕斌,朱伟林,李丽霞.渤中坳陷沉积演化和上第三系储盖组合分析[J].石油学报,2001,22(2):38-43.
[2] 汤良杰,万桂梅,周心怀,等.渤海盆地新生代构造演化特征[J].高校地质学报,2008,14(2):191-198.
[3] 于红岩,李洪奇,郭兵,等.基于成因机理的低阻油层精细评价方法[J].吉林大学学报(地球科学版),2012,42(2):335-343.
[4] 白薷,李继红.碎屑岩低阻油层成因及识别方法[J].断块油气田,2009,16(5),1637-39.
[5] 吴金龙,孙建孟,朱家俊,等.济阳坳陷低阻油层微观成因机理的宏观地质控制因素研究[J].中国石油大学学报(自然科学版),2006,30(3):22-25.
[6] 赵军龙,李甘,朱广社,等.低阻油层成因机理及测井评价方法综述[J].地球物理学进展,2011,26(4):1334-1343.
[7] 徐守余,李红南.储集层孔喉网络场演化规律和剩余油分布[J].石油学报,2003,24(4):48-53.
[8] 谢丛姣,刘明生,等.基于砂岩微观孔隙模型的水驱油效果研究——以张天渠油田长2油层为例[J].地质科技情报,2008,27(6):58-62.
[9] 赵靖舟,武富礼,闫世可,等.陕北斜坡东部三叠系油气富集规律研究[J].石油学报,2006,27(5):24-27.
[10] 何更生.油层物理[M].北京:石油工业出版社,2007:249-250.
[11] 何更生.油层物理[M].北京:石油工业出版社,2007:19-20.
[12] 马淼,孙卫,刘登科,等.华庆地区长6储层微观孔喉特征及对物性的影响研究[J].石油化工应用,2016,35(10):106-110.
[13] 李卫成,张艳梅,王芳,等.应用恒速压汞技术研究致密油储层微观孔喉特征——以鄂尔多斯盆地上三叠统延长组为例[J].岩性油气藏,2012,24(6):60-65.
[14] 叶仲斌.提高采收率原理[M].北京:石油工业出版社,2007:93-94.

备注/Memo

备注/Memo:
收稿日期:2018-07-25; 改回日期:2018-08-30。第一
作者简介:汪跃(1984—),硕士,现从事油气田开发工作。E-mail: wangyue10@cnooc.com.cn。
基金项目:“十三五”国家科技重大专项“海上稠油高效开发示范工程(2016ZX05058)”。
更新日期/Last Update: 2019-03-25