[1]张景轩,范 晓,陈 波,等.硬脆性页岩断裂韧性二维数值模拟研究[J].复杂油气藏,2019,12(01):73.[doi:10.16181/j.cnki.fzyqc.2019.01.016]
 ZHANG Jingxuan,FAN Xiao,CHEN Bo,et al.Two-dimensional numerical simulation of fracture toughnessof hard brittle shale[J].Complex Hydrocarbon Reservoirs,2019,12(01):73.[doi:10.16181/j.cnki.fzyqc.2019.01.016]
点击复制

硬脆性页岩断裂韧性二维数值模拟研究()
分享到:

《复杂油气藏》[ISSN:1674-4667/CN:31-2019/TQ]

卷:
12
期数:
2019年01期
页码:
73
栏目:
油气工程
出版日期:
2019-03-25

文章信息/Info

Title:
Two-dimensional numerical simulation of fracture toughnessof hard brittle shale
作者:
张景轩1范 晓2陈 波2刘向君1梁利喜1熊 健1
1.西南石油大学油气藏地质及开发工程国家重点实验室,四川 成都 610500; 2.东方地球物理公司物探技术研究中心成都分中心,四川 成都 610000
Author(s):
ZHANG Jingxuan1 FAN Xiao2 CHEN Bo2LIU Xiangjun1LIANG lixi1XIONG Jian1
1.State Key Laboratory of Geology and Development Engineering of Oil and Gas Reservoirs, Southwest University of Petroleum, Chengdu 610500, China; 2.Technology Development Center, Southwest Branch of Eastern Geophysical Corporation,Chengdu 610000, China
关键词:
页岩 巴西劈裂 断裂韧性 裂缝转向 数值模拟
Keywords:
shale Brazilian split fracture toughness fracture steering numerical simulation
分类号:
TE143
DOI:
10.16181/j.cnki.fzyqc.2019.01.016
文献标志码:
A
摘要:
以四川盆地长宁地区龙马溪组的页岩为研究对象,采用真实破裂过程RFPA2D数值分析软件,模拟人字形切槽巴西圆盘试件渐进破裂的整个过程,研究不同层理密度、层理角度以及层理力学性质等因素与页岩断裂韧性的关系,以及这些因素对裂缝前缘形态的影响,并探究断裂韧性与岩石脆性的关系。研究结果表明:断裂韧性随层理角度增加而先减小后增大; 在层理角度相同的条件下,随着层理面力学性质增强,断裂韧性逐渐增大; 当层理角度较小时,裂缝前缘随层理面发生转向,并且沿层理发生脆性剪切破坏; 当层理角度大于40°时,层理面作用显著减弱,裂缝在延伸时前缘随层理出现转向和分叉,并在试样端部产生次生裂纹; 层理密度较小时,裂缝在预置裂缝方向开裂后,受层理面影响转向层理面方向,最终贯穿圆盘,若角度增大,伴随有次生裂纹出现,若增大至80°以上时,裂缝穿过层理面,会出现转向和分叉; 层理密度较大时,裂缝不均匀扩展现象增多,圆盘端部伴随产生的次生裂纹数量也逐渐增加; 随着岩石的脆性指数增大,表现的断裂韧性减小,脆性指数有随角度先增大再减小的趋势。
Abstract:
Taking the shale of Changning area in Sichuan Basin as a research object, the effect of different bedding density, bedding angle and bedding mechanical properties on the fracture toughness of the RFPA2D was simulated by using the numerical analysis software of the real fracture process and simulating the progressive rupture of the Brazilian disc specimen with Herringbone notch. It was discussed the influence of these factors on the shape of fracture front, and it was investigated the relationship between fracture toughness and rock brittleness. The results showed as follows: the fracture toughness decreased with the angle change first and then increased, the minimum value occurred at 20°, and the fracture toughness increased with the increase of the mechanical properties of the bedding plane under the same bedding angle; when the bedding angle was small, the fracture front turned with the bedding surface, and the brittle shear failure along the bedding layer occurred; when the bedding angle was greater than 40°, the bedding effect was obviously weakened; when the crack was extended, the leading edge turned and forked with the bedding, and a secondary crack was produced at the end of the specimen; when the bedding density was small, the crack in the direction of the crack in the preset fracture was affected by the bedding surface, and the direction of the steering layer was influenced by the layer, with secondary cracks appearing, if increased to above 80°,when the cracks passed through the bedding surface, the steering and bifurcation would appear, and when the bedding density was large, the uneven expansion of the crack increased and the number of secondary cracks accompanying the disc end increased gradually; the fracture toughness decreased with the increase of brittle index of rock, and the brittleness index had the tendency of increasing and decreasing with the angle first.

参考文献/References:

[1] 李根生, 盛茂, 田守嶒, 等. 页岩气储层水平井与压裂工程基础问题探讨[J]. 科学通报, 2016, 61(26): 2883-2890.
[2] KAHRAMAN S, ALTINDAG R. A brittleness index to estimate fracture toughness[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 343-348.
[3] 王中华. 国内页岩气开采技术进展[J]. 中外能源, 2013, 18(2): 23-32.
[4] MUTALIK P N, GIBSON R W. Case History of Sequential and Simultaneous Fracturing of the Barnett Shale in Parker County[M]. 2008.
[5] 楼一珊, 陈勉, 史明义, 等. 岩石Ⅰ、Ⅱ型断裂韧性的测试及其影响因素分析[J]. 中国石油大学学报(自然科学版), 2007, 31(4):85-89.
[6] 衡帅, 杨春和, 郭印同, 等. 层理对页岩水力裂缝扩展的影响研究[J]. 岩石力学与工程学报, 2015. 34(2): 228-237.
[7] ATKINSON C, SMELSER R E, Sanchez J. Combined mode fracture via the cracked Brazilian disk test[J]. International Journal of Fracture, 1982, 18(4): 279-291.
[8] 崔振东, 刘大安, 安光明,等. V形切槽巴西圆盘法测定岩石断裂韧度KIC的实验研究[J]. 岩土力学, 2010, 31(9): 2743-2748.
[9] 张盛, 王启智. 用5种圆盘试件的劈裂试验确定岩石断裂韧度[J]. 岩土力学, 2009, 30(1): 12-18.
[10] ANONYMOUS. Suggested methods for determining the fracture toughness of rock[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1988, 25(2): 71-96.
[11] FOWELL R J. Suggested method for determining mode I fracture toughness using Cracked Chevron Notched Brazilian Disc(CCNBD)specimens[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 2007, 32(7): 322A-322A.
[12] NASSERI M H B, SCHUBNEL A, YOUNG R P. Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated Westerly granite[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(4): 601-616.
[13] 赵熙. 页岩压裂裂纹三维起裂与扩展行为的数值模拟与实验研究[D]. 中国矿业大学(北京), 2017.
[14] 满轲. 岩石动态断裂韧性测试方法研究[D]. 中国矿业大学(北京), 2010.
[15] 程远方, 吴百烈, 李娜, 等. 煤层压裂裂缝延伸及影响因素分析[J]. 特种油气藏, 2013, 20(2):126-129.
[16] 陈建国, 邓金根, 袁俊亮, 等. 页岩储层I、II型断裂韧性评价方法研究[J]. 岩石力学与工程学报, 2015, 34(6):3.
[17] 梁利喜, 何顺平, 张安东. CCNBD试样测试页岩I型断裂韧性[J]. 西部探矿工程, 2016(11):41-43.
[18] 赵金洲, 许文俊, 李勇明, 等. 页岩气储层可压性评价新方法[J]. 天然气地球科学, 2015, 26(6): 1165-1172.
[19] 张明明. T应力对岩石断裂韧性及裂纹起裂的影响[D]. 西南石油大学, 2017.
[20] 梁正召, 唐春安, 李厚祥,等. 单轴压缩下横观各向同性岩石破裂过程的数值模拟[J]. 岩土力学, 2005, 26(01):57-62.
[21] 朱万成, 唐春安, 杨天鸿,等. 岩石破裂过程分析用(RFPA~(2D))系统的细观单元本构关系及验证[J]. 岩石力学与工程学报, 2003, 22(1):24-24.
[22] 吴涛. 页岩气层岩石脆性影响因素及评价方法研究[D]. 西南石油大学, 2015.
[23] 夏英杰, 李连崇, 唐春安,等. 基于峰后应力跌落速率及能量比的岩体脆性特征评价方法[J]. 岩石力学与工程学报, 2016, 35(6):1141-1154.
[24] 夏英杰. 岩石脆性评价方法改进及其数值试验研究[D]. 大连理工大学, 2017.

备注/Memo

备注/Memo:
收稿日期:2018-10-22; 改回日期:2018-11-10。第一
作者简介:张景轩(1995—),在读研究生,油气勘探与地质工程。E-mail:cheungjens@126.com。
基金项目:复杂储层地震岩石物理分析及应用研究(2016A-3301)资助。
更新日期/Last Update: 2019-03-25