[1]孟红霞,徐悦新,陈德春,等.气井井筒积液高度计算模型研究[J].复杂油气藏,2019,12(01):81.[doi:10.16181/j.cnki.fzyqc.2019.01.017]
 MENG Hongxia,XU Yuexin,CHEN Dechun,et al.Calculation model for height of liquid loading in gas wellbore[J].Complex Hydrocarbon Reservoirs,2019,12(01):81.[doi:10.16181/j.cnki.fzyqc.2019.01.017]
点击复制

气井井筒积液高度计算模型研究()
分享到:

《复杂油气藏》[ISSN:1674-4667/CN:31-2019/TQ]

卷:
12卷
期数:
2019年01期
页码:
81
栏目:
油气工程
出版日期:
2019-03-25

文章信息/Info

Title:
Calculation model for height of liquid loading in gas wellbore
作者:
孟红霞1徐悦新1陈德春1张凯瑞1常 峰2姜 东2
1.中国石油大学(华东)石油工程学院,山东 青岛 266580; 2.中国石化胜利油田分公司,山东 东营 257002
Author(s):
MENG Hongxia1XU Yuexin1CHEN Dechun1ZHANG Kairui1CHANG Feng2JIANG Dong2
1.School of Petroleum Engineering in China University of Petroleum,Qingdao 266580,China; 2. SINOPEC Shengli Oilfield, Dongying 257002,China
关键词:
积液高度 计算模型 积液规律 气液分布状态 气井
Keywords:
height of liquid loading calculation model law of liquid loading gas-liquid distribution state gas well
分类号:
TE357
DOI:
10.16181/j.cnki.fzyqc.2019.01.017
文献标志码:
A
摘要:
积液是含水气井的常见问题,也是导致气井产量和生产效益下降的主要因素,及时对气井井筒积液情况进行诊断并计算积液高度是后续生产措施设计与实施的基础。目前国内外计算积液高度的方法或较为单一,不易得到准确、可靠的结果,或需要进行井下压力测试,费时费力,经济效益差,也不能满足目前油气田智能化、信息化建设的需要。针对该问题,从气井积液规律和井筒气液分布状态出发,基于“U”型管原理和井筒流体的压力平衡,研究了井筒中油管与油套环空内气液两相流动机理,建立了气井井筒积液高度计算模型,实现了基于地面实时监测资料的油管中积液高度的计算和积液液面的确定,并经现场10口井的实测数据检验,积液液面深度的平均绝对误差为39.67 m,积液液面深度的平均相对误差为2.02%,积液高度的平均绝对误差为39.67 m,平均相对误差为12.71%,能够满足工程计算的需要,为气井排水采气工艺优选与生产参数优化提供依据。
Abstract:
Liquid loading is a common problem in water-producing gas wells, which is also a main cause of decline in gas well production rate and productivity benefit. Real-time diagnosis of gas wells and correct calculation of liquid loading height are the basis for the design and implementation of subsequent production stimulation measures. At present, the existing domestic and foreign methods for calculating liquid loading height are either too simple to get accurate and reliable results, or needing downhole pressure test, which is time-labor consuming with a poor economic benefit and can not meet the requirements of intelligentization or digitization in current oil and gas fields. Based on the situation, the gas-liquid two-phase flow mechanism in both oil tubing and casing-tubing annulus was studied on the law of liquid loading in gas well and the gas-liquid distribution state in wellbore. Based on the "U"-shaped pipe principle and the pressure balance of the wellbore fluid, a calculation model of the liquid loading height in the gas well was established, realizing the calculation of the liquid loading height in the tubing and the determination of the liquid loading level based on the ground real-time monitoring data. According to the field test data of 10 wells, the average absolute error of the depth of liquid loading is 39.67 m, the average relative error is 2.02%, and the average absolute error of the height of liquid loading is 39.67 m, the average relative error is 12.71%. The results meet the requirement of engineering calculation and can provide references for gas extraction and drainage process optimization as well as production parameter optimization.

参考文献/References:

[1] 曹光强,周广厚.动能因子-积液高度法诊断气井积液[J].断块油气田,2009,16(06):123-125.
[2] 刘志森. 塔河凝析气井井筒积液判断标准[J].断块油气田,2009,16(03):68-69+92.
[3] 张大椿,刘晓,李远亮.凝析气藏井筒积液的诊断及排除方法综述[J].特种油气藏,2009,16(3):10-12.
[4] DOUSI N,CURRIE P K,VEEKEN C A M,et al. Modelling the gas well liquid loading process[C].SPE 95282,2005:1-10.
[5] CHUPIN G,HU B,HAUGSET T,et al. Integrated wellbore/reservoir model predicts flow transients in liquid-loaded gas wells [C].SPE 110461,2007:1-12.
[6] 赵界,李颖川,刘通,等.大牛地地区致密气田气井积液判断新方法[J].岩性油气藏,2013,25(1):122-125.
[7] 赵春立,杨志,张正祖.气井井筒积液及其高度研究[J].重庆科技学院学报(自然科学版),2011,13(5):93-95.
[8] 杨志,赵春立,刘雄伟,等.大涝坝凝析油气田气井积液判断与积液深度计算[J].天然气工业,2011,31(9):62-64.
[9] 熊钰,刘斌,徐文龙,等.两种准确预测低渗低产气井积液量的简易方法[J]. 特种油气藏,2015,22(2):94-97.
[10] 曹光强,侯读杰,姜晓华.气井积液量预测模型改进[J].大庆石油地质开发,2014,33(2):97-101.
[11] 白晓弘,田伟,田树宝,等.低产积液气井气举排水井筒流动参数优化[J].断块油气田,2014,21(01):125-128.
[12] 苟三权.气井井筒液面位置确定的建议方法[J].油气井测试,2006,15(4):24-25.
[13] 梁全权,邹啁,王维娜,等.产水凝析气井积液诊断研究[J].天然气勘探与开发,2015,38(1):57-59.
[14] LEA J F,NICKENS H V, WELLS M R. Gas well deliquification[M]. The Second Edition. Elsevier:Gulf Professional Publishing,2008:13-30.
[15] 邹啁.产水凝析气井井筒积液分析[D].荆州:长江大学,2014.
[16] 熊巍.气井积液规律及排水采气优化[D].荆州:长江大学,2014.
[17] 郭镜,黄召庭,鲁洪江,等.一种提高气井静压计算精度的方法[J],岩性油气藏,2011,23(1):123-125.
[18] 陈德春,徐悦新,孟红霞,等.气井气液两相管流压降计算模型评价与优选[J].断块油气田,2017,24(6):840-843.
[19] HAGEDORN A R, BROWN K E. Experimental study of pressure gradients occurring during continuous two phase flow in small-diameter vertical conduits[J]. Journal of Petroleum Technology, 1965,17(4):475-484.
[20] 李相方,庄湘琦,刚涛,等.天然气偏差系数模型综合评价与选用[J].石油钻采工艺,2001,23(2):42-46.
[21] 毛伟,梁政.计算气井井筒温度分布的新方法[J].西南石油学院学报,1999,(21)3,56-58..

备注/Memo

备注/Memo:
收稿日期:2018-07-30; 改回日期:2018-12-24。第一
作者简介:孟红霞(1968—),女,讲师,现主要从事油气渗流物理理论与技术的研究与教学工作。E-mail:dechun@upc.edu.cn。
基金项目:中国石油化工股份有限公司项目“提高采油系统效率与智能化监控技术”(P15121)。
更新日期/Last Update: 2019-03-25