[1]安 杰,喻 建,邵东波,等.长庆油田环西-彭阳探区长8油层自生热压裂工艺研究与应用[J].复杂油气藏,2021,14(04):106-111.[doi:10.16181/j.cnki.fzyqc.2021.04.018]
 AN Jie,YU Jian,SHAO Dongbo,et al.Research and application of self-generated heat fracturing technology for Chang 8 reservoir in Huanxi-Pengyang exploration area of Changqing Oilfield[J].Complex Hydrocarbon Reservoirs,2021,14(04):106-111.[doi:10.16181/j.cnki.fzyqc.2021.04.018]
点击复制

长庆油田环西-彭阳探区长8油层自生热压裂工艺研究与应用()
分享到:

《复杂油气藏》[ISSN:1674-4667/CN:31-2019/TQ]

卷:
14卷
期数:
2021年04期
页码:
106-111
栏目:
油气工程
出版日期:
2021-12-25

文章信息/Info

Title:
Research and application of self-generated heat fracturing technology for Chang 8 reservoir in Huanxi-Pengyang exploration area of Changqing Oilfield
作者:
安 杰1喻 建1邵东波1张海峰1李涛涛1郝志磊1李年银2
1. 中国石油长庆油田公司勘探事业部,甘肃 庆阳 745000;2. 西南石油大学“油气藏地质及开发工程”国家重点实验室,四川 成都 610500
Author(s):
AN Jie1YU Jian1SHAO Dongbo1ZHANG Haifeng1LI Taotao1HAO Zhilei1LI Nianyin2
1.Exploration Division of PetroChina Changqing Oilfield Company,Qingyang 745000,China;2.State Key Laboratory of “Reservoir Geology and Development Engineering” of Southwest Petroleum University,Chengdu 610500,China
关键词:
自生热压裂工艺超支化聚合物原油“冷伤害”环西-彭阳探区长8层
Keywords:
in-situ thermal fracturing technologyhyperbranched polymercold damage of crude oilHuanxi-Pengyang exploration areaChang 8 reservoir
分类号:
TE357
DOI:
10.16181/j.cnki.fzyqc.2021.04.018
文献标志码:
A
摘要:
长庆油田环西-彭阳探区长8层常规压裂改造效果差,室内研究发现关键原因是原油“冷伤害”。自生热压裂工艺是解决该问题的有效手段。对比分析目前几种自生热压裂工艺的优缺点,提出了一种改进的自生热压裂液体系,该体系的关键是稠化剂——超支化聚合物,该聚合物可以在高矿化度盐水和酸性条件下形成胶体。经实验评价,该体系可使压裂液升温幅度达55.2 ℃,最高携砂砂比35%,破胶性能良好,破胶液对支撑裂缝及地层基质伤害率较低,具有良好的耐温耐剪切性能,对管柱腐蚀较弱,体系反应释放出的气体可明显提高地层压力,提高返排率。2020年自生热压裂工艺在长庆油田环西-彭阳探区已实施6井次,与常规压裂工艺相比,试油产量由平均3.5 t/d上升至13.27 t/d,产液量由平均20.44 t/d上升至21.86 t/d,试油成功率由21.7%上升至50%,效果显著,为长庆油田环西-彭阳探区长8层的进一步开发提供了有力的技术支撑。
Abstract:
The conventional fracturing effect of the Chang 8 layer is poor in the Huanxi-Pengyang exploration area of Changqing Oilfield.Laboratory studies have found that the key cause of this problem is the “cold damage” of crude oil. The in-situ thermal fracturing technology is an effective means to solve this problem. By comparing and analyzing the advantages and disadvantages of several current in-situ thermal fracturing technologies,it is proposed an improved in-situ thermal fracturing fluid system. The key of the system is the hyperbranched polymer,which can form colloids under the conditions of high salinity brine and acid. According to the laboratory evaluation,the system can increase the temperature of the fracturing fluid to 55.2 ℃,with the highest sand-carrying ratio of 35%;the gel breaking performance is good,the damage rate of the gel breaking fluid to the supporting cracks and the formation matrix is low,and the system has good temperature resistance and shear resistance,which has weak corrosion to fracturing string. The gas generated by the reaction can obviously increase the formation pressure and the flow-back rate. In 2020,the in-situ thermal fracturing technology has been implemented in the Huanxi-Pengyang exploration area of Changqing Oilfield for 6 wells. Compared with the conventional fracturing technology,the average test production is increased from 3.5 t/d to 13.27 t/d,the average daily fluid production is increased from 20.44 t/d to 21.86 t/d,and the success rate of oil test is increased from 21.7% to 50%. The stimulation effect is remarkable,which provides strong technical support for the further development of the Chang 8 layer in the Huanxi-Pengyang exploration area of the Changqing Oilfield.

参考文献/References:

[1]蒋钧,肖博文,赵迁,等.彭阳长8油层储层特征研究[J].石油化工应用,2015,34(4):79-82,87.
[2]刘静,吴金桥,张宁生,等.压裂液低温破胶化学生热体系的探讨[J].西安石油大学学报(自然科学版),2004,19(3):39-41,45.
[3]吴金桥,刘晓娟,吴新民,等.微胶囊包裹化学生热体系与压裂液的配伍性研究[J].西安石油大学学报(自然科学版),2005,20(2):52-54.
[4]吴金桥,张宁生,吴新民,等.微胶囊包裹化学生热压裂液体系及其工艺技术研究[J].石油学报,2005,26(5):115-118,122.
[5]刘平礼,兰夕堂,邢希金,等.一种自生热耐高温高密度压裂液体系研究[J].石油钻采工艺,2013,35(1):101-104.
[6]杨建军,叶仲斌,张绍彬,等.新型低伤害压裂液性能评价及现场试验[J].天然气工业,2004,24(6):61-63.
[7]方行,向丽,屈静,等.新型延迟自生热增压泡沫压裂液研究[J].特种油气藏,2011,18(5):108-110.
[8]刘徐慧,杨东梅,王文耀,等.新型自生热类泡沫压裂液体系[J].钻井液与完井液,2012,29(3):71-73.
[9]李凯,任强,何东,等.金县1-1油田解堵工艺研究[J].精细与专用化学品,2020,28(3):20-24.
[10]刘贵宾,侯继常,孙群,等.浅谈自生热压裂技术的试验应用[J].油气井测试,2007,16(6):46-48.
[11]熊波,徐敏杰,王丽伟,等.清洁自生热压裂液技术与实验方法[J].钻井液与完井液,2016,33(1):118-121.
[12]郑克祥,怡宝安,袁文义,等.稠油储层自生热低伤害碱性压裂改造技术[J].石油天然气学报,2010,32(4):298-300,317,433.
[13]张坤,鲁克英,冯彩琴,等.高凝油油藏自生热压裂液技术在河南油田的应用[J].石油天然气学报,2010,32(2):324-326.
[14]彭轩,刘蜀知,刘福健.针对高凝油油藏的自生热压裂技术[J].特种油气藏,2003,10(2):80-81,97.
[15]于尚.低压气田暂堵及自解堵体系研究[D].成都:西南石油大学,2018.
[16]田初明,刘华伟,周薛,等.海上油田稠油井自生热复合解堵工艺研究[J].天津科技,2017,44(2):69-72.
[17]张绍彬,谭明文,钟水清,等.自升温升压新型压裂液在洛带气田浅层气藏的应用研究[J].钻采工艺,2003,26(6):23-25.
[18]何兴贵.自生热类泡沫压裂液在川西地区J3p气藏的应用[J].天然气工业,2008,28(9):86-88.
[19]付建民,马英文,苏延辉,等.自生热气、酸复合解堵技术在金县1-1油田水平井的应用[J].石油钻采工艺,2013,35(3):105-107.
[20]ZHANGKS,ZHAOZF,TANGMR,etal.Anewtypeofexperimentallyproposedinsituheat/gascleanfoamfracturingfluidsystem[J].JournalofPetroleumExplorationandProductionTechnology,2020,10(8):3419-3436.
[21]MAOXY,LINY,CHENF,etal.Studyonthepracticeofdownholedewaxingbyinsitugeneratedheat[J].JournalofPetroleumExplorationandProduction,2021,11:1943-1961.
[22]雷明,战永平,罗明良,等.化学自生热/气增产技术研究进展与应用[C]//2020油气田勘探与开发国际会议论文集,成都:西安石油大学,2020:876-887.
[23]沈秀伦,蒋官澄,李新亮,等.自生热体系对压裂液破胶性能的影响[J/OL].油田化学:1-11(2021-08-24)[2021-09-13].http://kns.cnki.net/kcms/detail/51.1292.TE.20210824.1058.004.html.

备注/Memo

备注/Memo:
收稿日期:2021-07-26;改回日期:2021-12-02。
第一作者简介:安杰(1986—),硕士,从事油气田增产增注技术研究与应用工作。E-mail:jivan520@163.com。
更新日期/Last Update: 1900-01-01