[1]张 瑾.分形理论与矩法估计联合的页岩孔隙结构表征[J].复杂油气藏,2022,15(02):53-60.[doi:10.16181/j.cnki.fzyqc.2022.02.009]
 ZHANG Jin.Characterization of shale pore structure based on fractal theory andmoment estimation[J].Complex Hydrocarbon Reservoirs,2022,15(02):53-60.[doi:10.16181/j.cnki.fzyqc.2022.02.009]
点击复制

分形理论与矩法估计联合的页岩孔隙结构表征()
分享到:

《复杂油气藏》[ISSN:1674-4667/CN:31-2019/TQ]

卷:
15卷
期数:
2022年02期
页码:
53-60
栏目:
油气开发
出版日期:
2022-06-25

文章信息/Info

Title:
Characterization of shale pore structure based on fractal theory andmoment estimation
作者:
张 瑾
中石化重庆页岩气有限公司,重庆 408400
Author(s):
ZHANG Jin
Sinopec Chongqing Shale Gas Co.,Ltd.,Chongqing 408400,China
关键词:
分形理论页岩矩法孔隙结构气体吸附
Keywords:
fractal theoryshalemoment methodpore structuregas adsorption
分类号:
TE311
DOI:
10.16181/j.cnki.fzyqc.2022.02.009
文献标志码:
A
摘要:
页岩孔隙结构特征研究对页岩油气的评价与开发具有重要意义。选取川东南地区下志留统龙马溪组页岩为载体,采用FHH分形模型计算了页岩孔隙分形维数,以地质混合经验分布与矩法估计原理为基础,计算了孔隙结构特征参数,并进一步探索了分形理论与矩法估计对页岩孔隙结构表征的适用性。研究发现,页岩孔隙具有明显的分形维数,分形维数大,说明页岩孔隙系统复杂多变,非均质性较强。分形维数与页岩孔隙比表面积正相关,与孔径均值、标准差、变异系数和歪度负相关,即孔径均值越小,微孔所占比例越大,孔隙间连通性变差,反映孔隙结构较差且复杂程度高,但孔内比表面积变大,对气体的吸附能力变强,分形维数变大;反之亦然。页岩分形维数和孔隙结构特征参数与孔隙形态特征表现出良好的吻合性,即H2型墨水瓶孔分形维数大,标准差、变异系数和歪度小;H3型平行板状裂缝型孔隙的分形维数相对较小,标准差、变异系数和歪度较大。分形维数是页岩对气体的吸附和储运能力强弱、孔隙形态特征的反映。
Abstract:
Research on the characteristics of shale pore structure is of great significance to the evaluation and development of shale oil and gas. Taking the shale of the Longmaxi Formation of the Lower Silurian in the Southeast Sichuan Basin as the carrier,the fractal dimension of the shale pore was calculated by the FHH fractal model. Based on the principle of geological mixing empirical distribution and moment estimation,the characteristic parameters of pore structure were calculated,and the applicability of fractal theory and moment estimation to the characterization of shale pore structure was further explored. The study indicates that shale pores have an obvious fractal dimension,and the fractal dimension is large,indicating that the shale pore system is complex and changeable and has strong heterogeneity. The fractal dimension is positively correlated with the specific surface area of shale pores,and negatively correlated with the mean value of pore diameter,standard deviation,coefficient of variation,and skewness. That is,the smaller the mean value of pore diameter,the larger the proportion of micropores,and the worse the connectivity between pores,reflecting the poor pore structure and high complexity,but as the specific surface area in pores becomes larger,the adsorption capacity of gas becomes stronger,and the fractal dimension becomes larger. The fractal dimension and pore structure characteristic parameters of shale are in good agreement with the pore morphological characteristics,that is,the pore fractal dimension of the H2 ink bottle has a larger fractal dimension,small standard deviation,coefficient of variation,and skewness. The fractal dimension of the H3 type parallel-plate fractured pore is relatively small,and the standard deviation,coefficient of variation,and skewness are large. The fractal dimension is a reflection of shale gas adsorption,storage,transportation capacity,and pore morphology characteristics.

参考文献/References:

[1]LOUCKSRG,REEDRM,RUPPELSC,etal.Morphology,genesis,anddistributionofnanometer-scaleporesinsiliceousmudstonesoftheMississippianBarnettshale[J].JournalofSedimentaryResearch,2009,79(12):848-861.
[2]LOUCKSRG,REEDRM,RUPPELSC.Spectrumofporetypesandnetworksinmudrocksandadescriptiveclassificationformatrix-relatedmudrockpores[J].AAPGBulletin,2012,96(6):1071-1098.
[3]钟太贤.中国南方海相页岩孔隙结构特征[J].天然气工业,2012,32(9):1-4,21.
[4]陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.
[5]王红岩,刘玉章,董大忠,等.中国南方海相页岩气高效开发的科学问题[J].石油勘探与开发,2013,40(5):574-579.
[6]CHALMERSGR,BUSTINRM,POWERIM.Char-acterizationofgasshaleporesystemsbyporosimetry,pycnometry,surfacearea,andfieldemissionscanningelectronmicroscopy/transmissionelectronmicroscopyimageanalyses:examplesfromtheBarnett,Woodford,Haynesville,Marcellus,andDoigunits[J].AAPGBulletin,2012,96(6):1099-1119.
[7]陈磊,姜振学,温暖,等.页岩纳米孔隙分形特征及其对甲烷吸附性能的影响[J].科学技术与工程,2017,17(2):31-39.
[8]孙梦迪.中国南方海相页岩孔隙特征及其对气体储集与迁移的制约[D].中国地质大学(北京),2017.
[9]LIWJ,WANGCC,SHIZJ,etal.Thedescriptionofshalereservoirporestructurebasedonmethodofmomentsestimation[J].PlosOne,2016,11(3):2-14.
[10]谢晓永,郭新江,蒋祖军,等.储层孔隙结构分析特征与损害研究[J].天然气地球科学,2011,22(6):1128-1132.
[11]杨峰,宁正福,王庆,等.页岩纳米孔隙分形特征[J].天然气地球科学,2014,25(4):318-623.
[12]孙雷,高玉琼,潘毅,等.页岩纳米孔隙表面分形特征及其影响因素[J].西南石油大学学报(自然科学版),2017,39(6):85-91.
[13]李志清,王伟,王晓明,等.页岩微纳米孔隙结构分形特征研究[J].工程地质学报,2018,26(2):494-503.
[14]李小明,王亚蓉,吝文,等.荆门探区五峰组—龙马溪组深层页岩微观孔隙结构与分形特征[J].天然气地球科学,2021,49(6):1-11.
[15]刘树根,马文辛,JANSAL等.四川盆地东部地区下志留统龙马溪组页岩储层特征[J].岩石学报,2011,27(8):2239-2252.
[16]陈乔,谭彦虎,王莉莎,等.渝东南龙马溪组页岩气储层物性特征[J].科技导报,2013,31(36):15-19.
[17]赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956.
[18]张烈辉,唐洪明,陈果,等.川南下志留统龙马溪组页岩吸附特征及控制因素[J].天然气工业,2014,34(12):63-69.
[19]施泽进,罗蛰潭,彭大钧,等.非线性地质勘探研究导论[M].成都:四川科学技术出版社,1995
[20]徐勇,吕成福,陈国俊,等.川东南龙马溪组页岩孔隙分形特征[J].岩性油气藏,2015,27(4):32-39.
[21]秦长兴,翟裕生.矿床学中若干自相似性现象及其意义[J].矿床地质,1992,11(3):259-265.
[22]谢和平,PARISEAUWG.岩石节理粗糙系数(JRC)的分形估计[J].中国科学(B辑),1994,24(5):524-530.
[23]申维,赵鹏大.分形统计模型的理论研究及其在地质学中的应用[J].地质科学,1998,33(2):234-243.
[24]PFEIFERP,AVNIRD.Chemistryinnon-integraldimensionsbetweentwoandthree[J].JournalofChemicalPhysics,1983,7(7):3369-3558.
[25]王欣,齐梅,李武广,等.基于分形理论的页岩储层微观孔隙结构评价[J].天然气地球科学,2015,26(4):754-759.
[26]梁利喜,熊健,刘向君.川南地区龙马溪组页岩孔隙结构的分形特征[J].成都理工大学学报(自然科学版),2015,42(6):700-708.
[27]张琴,梁峰,梁萍萍,等.页岩分形特征及主控因素研究——以威远页岩气田龙马溪组页岩为例[J].中国矿业大学学报,2020,49(1):110-122..
[28]肖磊,李卓,杨有东,等.渝东南下志留统龙马溪组不同岩相页岩的孔隙结构与分形特征[J].科学技术与工程,2021,21(2):512-521.
[29]PFEIFERP,OBERTM,COLEMW.FractalbetandFHHtheroiesofadsorption:acomparativestudy[J].ProceedingsoftheRoyalSocietyA-Mathematical,Physical&EngineeringSciences,1989,423(1864):169-188.
[30]TANGP,CHEWNYK,CHANHK,etal.LimitationofdeterminationofsurfacefractaldimensionusingN2adsorptionisothermsandmodifiedFrenkel-Halsey-Hilltheory[J].Langmuir,2003,19(7):2632-2638.
[31]RIGBYSP.Predictingsurfacediffusivitiesofmoleculesfromequilibriumadsorptionisotherms[J].ColloidsandSurfacesA-PhysicochemicalandEngineeringAspects,2005,262(1/3):139-149.
[32]罗蛰潭,王允诚.油气储集层的孔隙结构[M].北京:科学出版社,1986.
[33]王长城,陈布科,叶泰然,等.矩法在研究低渗透储层孔隙结构中的应用及软件开发[J].成都理工大学学报(自然科学版),2003,30(3):280-284.
[34]李果年,梁芹.特低孔渗储集层孔喉参数的计算[J].新疆石油地质,2001,22(4):324-327.
[35]SINGKSW,EVERETTDH,HAULRAW,etal.Reportingphysisorptiondataforgas/solidsystemswithspecialreferencetothedeterminationofsurfaceareaandporosity[J].PureandAppliedChemistry,1985,57(4):603-619.
[36]CHALMERSGRL,BUSTINRM.TheorganicmatterdistributionandmethanecapacityoftheLowerCretaceousstrataofNortheasternBritishColumbia,Canada[J].InternationalJournalofCoalGeology,2007,70(1/3):223-239.
[37]ROSSDJK,BUSTINRM.Theimportanceofshalecompositionandporestructureupongasstoragepotentialofshalegasreservoirs[J].MarineandPetroleumGeology,2009,26(6):916-927.

相似文献/References:

[1]邱 岐.下扬子巢湖地区二叠系大隆组页岩特征及潜力分析[J].复杂油气藏,2021,14(02):8.[doi:10.16181/j.cnki.fzyqc.2021.02.002]
 QIU Qi.Shale characteristics and potential analysis of Dalong Formation in Chaohu area,lower Yangtze area[J].Complex Hydrocarbon Reservoirs,2021,14(02):8.[doi:10.16181/j.cnki.fzyqc.2021.02.002]
[2]刘佰衢,刘诗琼,刘向君,等.层理性页岩岩石力学特性数值模拟[J].复杂油气藏,2023,16(04):410.[doi:10.16181/j.cnki.fzyqc.2023.04.008]
 LIU Baiqu,LIU Shiqiong,LIU Xiangjun,et al.Numerical simulation on mechanical properties of stratified shale rocks[J].Complex Hydrocarbon Reservoirs,2023,16(02):410.[doi:10.16181/j.cnki.fzyqc.2023.04.008]

备注/Memo

备注/Memo:
收稿日期:2021-12-09;改回日期:2022-02-19。
作者简介: 张瑾(1994—),女,硕士,助理工程师,研究方向为油气藏地质及开发。E-mail:zhangjin725@outlook.com。
更新日期/Last Update: 2022-06-25