[1]刘 超,侯亚伟,李 林,等.浅水三角洲储层水驱波及系数定量评价[J].复杂油气藏,2023,16(03):315-319.[doi:10.16181/j.cnki.fzyqc.2023.03.011]
 LIU Chao,HOU Yawei,LI Lin,et al.Quantitative evaluation of water flooding sweep coefficient in shallow waterdelta reservoir[J].Complex Hydrocarbon Reservoirs,2023,16(03):315-319.[doi:10.16181/j.cnki.fzyqc.2023.03.011]
点击复制

浅水三角洲储层水驱波及系数定量评价()
分享到:

《复杂油气藏》[ISSN:1674-4667/CN:31-2019/TQ]

卷:
16卷
期数:
2023年03期
页码:
315-319
栏目:
油气开发
出版日期:
2023-09-25

文章信息/Info

Title:
Quantitative evaluation of water flooding sweep coefficient in shallow waterdelta reservoir
作者:
刘 超侯亚伟李 林许万坤李媛婷
中海石油(中国)有限公司天津分公司,天津 300459
Author(s):
LIU ChaoHOU YaweiLI LinXU WankunLI Yuanting
CNOOC Ltd. Tianjin Branch,Tianjin 300459,China
关键词:
薄互层油藏浅水三角洲谢尔卡乔夫公式水驱波及系数
Keywords:
the thin interbed reservoirshallow water deltaSelkachev Formulawater flooding sweep coefficient
分类号:
TE341
DOI:
10.16181/j.cnki.fzyqc.2023.03.011
文献标志码:
A
摘要:
浅水三角洲储层具有砂泥多期叠置薄互层、横向变化快的特点,开发过程中往往波及系数低,水驱效果差。本文在谢尔卡乔夫波及系数公式的基础上,针对浅水三角洲储层沉积特点,加入薄互层分布比例和砂体几何形状因素的影响,对波及系数进行定量化修正。利用此公式指导油田开发调整中的层系划分、井距优化,显著提高了该类油藏的波及系数,该评价方法在渤海湾PL油田开发调整中取得良好效果,实践证明基于纵向薄互层分布比例和砂体分布因素的波及系数定量化分析,有助于该类油藏开发政策及技术界限的制定。
Abstract:
Shallow water delta reservoirs are characterized by thin interlayers superimposed on sand and mud in multiple phases and rapid lateral changes. In the development process,the sweep coefficient is often low,and the water flooding effect is poor. Based on the formula of Selkachev’s sweep coefficient,the sweep coefficient is quantitatively corrected by adding the influence of the distribution ratio of thin interlayers and sandbody geometry to the sedimentary characteristics of shallow water delta reservoir. Using this formula to guide the formation division and optimization of well spacing in oilfield development and adjustment,the sweep coefficient of this type of reservoir has been significantly improved. This evaluation method has achieved good results in the development and adjustment of the PL Oilfield in Bohai Bay. It has been proved that the quantitative analysis of the sweep coefficient based on the distribution ratio of longitudinal thin interbeds and the sand body distribution factors can help in formulating of the development policies and technical limits of this type of reservoir.

参考文献/References:

[1]段宇,戴卫华,李金宜,等.渤海水驱油田不同开发阶段波及系数和驱油效率计算方法研究[J].石油地质与工程,2017,31(2):81-86.
[2]王国先,谢建勇,李建良,等.储集层相对渗透率曲线形态及开采特征[J].新疆石油地质,2004,25(3):301-304.
[3]刘英宪.水驱砂岩油藏理论递减规律计算新方法[J].中国海上油气,2016,28(3):97-100.
[4]吴小红,吕修祥,周心怀,等.黄河口凹陷浅水三角洲沉积特征及其油气勘探意义[J].石油与天然气地质,2010,31(2):165-172.
[5]代黎明,李建平,周心怀,等.渤海海域新近系浅水三角洲沉积体系分析[J].岩性油气藏,2007,19(4):75-81.
[6]朱伟林,李建平,周心怀,等.渤海新近系浅水三角洲沉积体系与大型油气田勘探[J].沉积学报,2008,26(4):575-582.
[7]姚光庆,马正,赵彦超,等.浅水三角洲分流河道砂体储层特征[J].石油学报,1995,16(1):24-31.
[8]李兵,马悦.水驱体积波及系数预测方法研究[J].石油化工与应用,2017,36(2):89-92.
[9]刘晨,张金庆,李文忠,等.基于近似理论水驱曲线的油藏水驱体积波及系数动态计算方法[J].油气地质与采收率,2020,27(5):112-118.
[10]张顺康.利用动态资料计算水驱波及系数方法研究[J].复杂油气藏,2018,11(1):49-51.
[11]陈朝晖,柳茜茜,潘豪,等.无因次采液指数曲线形态特征的影响因素[J].断块油气田,2019,26(1):62-65.
[12]陈元千,邹存友.对谢尔卡切夫(Щелкачев)公式的推导及拓展[J].断块油气田,2010,17(6):729-732.
[13]陈元千.水驱体积波及系数变化关系的研究[J].油气地质与采收率,2001,8(6):49-51.
[14]陈元千,郭二鹏.预测水驱油田体积波及系数和可采储量的方法[J].中国海上油气,2007,19(6):387-389.
[15]唐林,郭肖,邓钦月,等.一种预测水驱油田体积波及系数的新方法[J].新疆石油地质,2013,34(5):557-559.
[16]安桂荣,许家峰,周文胜,等.海上复杂河流相水驱稠油油田井网优化——以BZ油田为例[J].中国海上油气,2013,25(3):28-31.
[17]张金庆,安桂荣,耿站立,等.中国近海陆相典型沉积类型油田水驱高效开发模式探讨[J].中国海上油气,2017,29(2):70-77.
[18]邓景夫,李云鹏,贾晓飞,等.海上高含水期油田细分层系技术界限研究[J].特种油气藏,2018,25(2):116-119.
[19]蔡晖,阳晓燕,张占华,等.层间干扰定量表征新方法在渤南垦利区域的应用[J].特种油气藏,2018,25(4):91-94.
[20]张运来,廖新武,胡勇,等.海上稠油油田高含水期开发模式研究[J].岩性油气藏,2018,30(4):120-126.

相似文献/References:

[1]李艳然.动静相结合的浅水三角洲平原分流河道单砂体对比方法[J].复杂油气藏,2021,14(03):20.[doi:10.16181/j.cnki.fzyqc.2021.03.004]
 LI Yanran.Dynamic and static comparison method of single sandbody in distributary channel of shallow delta plain[J].Complex Hydrocarbon Reservoirs,2021,14(03):20.[doi:10.16181/j.cnki.fzyqc.2021.03.004]

备注/Memo

备注/Memo:
收稿日期:2022-08-02;改回日期:2022-10-12。
第一作者简介:刘超(1979—),硕士,高级工程师,主要从事油气田开发研究工作。E-mail:liuchao@cnooc.com.cn。
基金项目:中海石油(中国)有限公司科技项目“渤海双高油田挖潜关键技术研究”(YXKY-2018-TJ-04),“渤海油田强化水驱及增产挖潜技术”(CNOOC-KJ 135 ZDXM 36 TJ 01 TJ)。
更新日期/Last Update: 1900-01-01