[1]杨克兵,曹程程.电阻率比值法评价油水层的发展及应用[J].复杂油气藏,2020,13(03):6-11.[doi:10.16181/j.cnki.fzyqc.2020.03.002]
 YANG Kebing,CAO Chengcheng.Development and application of resistivity ratio method for evaluatingoil-water layers[J].Complex Hydrocarbon Reservoirs,2020,13(03):6-11.[doi:10.16181/j.cnki.fzyqc.2020.03.002]
点击复制

电阻率比值法评价油水层的发展及应用()
分享到:

《复杂油气藏》[ISSN:1674-4667/CN:31-2019/TQ]

卷:
13卷
期数:
2020年03期
页码:
6-11
栏目:
油气勘探
出版日期:
2020-09-25

文章信息/Info

Title:
Development and application of resistivity ratio method for evaluatingoil-water layers
作者:
杨克兵曹程程
中国石油华北油田分公司,河北 任丘 062552
Author(s):
YANG KebingCAO Chengcheng
PetroChina Huabei Oilfield Company,Renqiu 062552,China
关键词:
电阻率比值法低阻油层油水层评价径向电阻率复杂孔隙结构油层识别
Keywords:
resistivity ratio methodlow-resistance oil layersoil-water layer evaluationradial resistivitycomplex pore structurereservoir identification
分类号:
TE122
DOI:
10.16181/j.cnki.fzyqc.2020.03.002
文献标志码:
A
摘要:
为提高低阻油层、复杂孔隙结构油层的识别和评价精度,更好地拓展常规测井资料评价油水层的应用范围,对利用电阻率比值法评价油水层的方法开展深入研究。研究发现径向电阻率比值法评价油水层的方法并不是简单通过单条电阻率曲线的高低进行油水层评价,摆脱了单纯认为高阻解释为油层、低阻解释为水层的评价模式,能够有效评价低阻及复杂孔隙结构油水层。径向电阻率比值与储层含水饱和度为幂函数关系,能够反映储层的含油性,是当前值得推广发展的常规测井资料评价油气水层的有效方法。同时,使用径向电阻率比值计算储层含水饱和度的模型具有较大的潜在价值,可为勘探新区、低阻油层发育区测井解释及水淹层评价提供可靠依据,有助于提高测井解释符合率。
Abstract:
In order to improve the identification and evaluation accuracy of low-resistance oil layers and complex pore structure oil layers,and to better expand the application range of conventional logging data to evaluate oil and water layers,the method of evaluating oil and water layers using resistivity ratio method was carried out in-depth research.The study found that the method of evaluating the oil-water layer by the radial resistivity ratio method is not to evaluate the oil-water layer by the height of a single resistivity curve.It gets rid of the evaluation model of high resistance being oil and low resistance being water,and can effectively evaluate oil-water layers with low resistance and complex pores structure.The radial resistivity ratio and the water saturation of the reservoir are in a power function relationship,which can reflect the oil content of the reservoir.It is an effective method for evaluating oil,gas,and water layers with conventional logging data that is worth popularizing and developing.At the same time,the model of calculating reservoir water saturation with the ration of radial resistivity has great potential value,which can provide a reliable basis for logging interpretation and evaluation of water-flooded formations in new exploration areas and low-resistivity oil layer development areas,and is helpful to improve the coincidence rate of logging interpretation.

参考文献/References:

[1]何伶,丁娱娇,迟秀荣,等.歧口凹陷内因低电阻率油气层饱和度定量评价方法[J].测井技术,2014,38(1):51-58,89.
[2]郭迎春,庞雄奇,陈冬霞,等.致密砂岩气成藏研究进展及值得关注的几个问题[J].石油与天然气地质,2013,34(6):717-724.
[3]张帆,闫建平,李尊芝,等.碎屑岩阿尔奇公式岩电参数与地层水电阻率研究进展[J].测井技术,2017,41(2):127-134.
[4]袁伟,张占松,吕洪志,等.水淹层混合液地层水电阻率的计算方法[J].石油天然气学报,2014,36(9):78-83.
[5]宋延杰,陈济强,唐晓敏,等.低孔渗泥质砂岩三水孔隙结合导电模型及其在海上油田的应用[J].大庆石油学院学报,2010,34(6):100-105.
[6]刘行军,崔丽香,李香玲,等.苏里格气田致密砂岩气层识别难点及方法评述[J].天然气勘探与开发,2015,38(1):22-29.
[7]张海涛,任战利,时卓,等.苏里格气田东区低阻气层成因机理分析[J].西北大学学报(自然科学版),2011,41(4):663-668.
[8]中国石油勘探与生产公司.低阻油气藏测井识别评价方法与技术[M].北京:石油工业出版社,2006.
[9]雍世和,张超谟.测井数据处理与综合解释[M].东营:石油大学出版社,1996.
[10]张丽华,潘保芝,李舟波,等.新三水导电模型及其在低孔低渗储层评价中的应用[J].石油地球物理勘探,2010,45(3):431-435.
[11]谭廷栋,张龙海.电阻率浮动比值法泥质砂岩油气、水层一个有效的评价新技术[J].石油学报,1985,6(2):39-50.
[12]ARCHIEGE.TheelectricalresistivitylogasanaidindeterminingSomereservoircharacteristics[J].Transa-ctionsoftheAIME,1942,146(1):54-62.
[13]谭廷栋.测井解释凝析油气层[J].天然气工业,1987,7(1):21-27.[14]潘和平,黄智辉.测井资料解释煤成气层方法研究[J].现代地质,1994,8(1):119-125.
[15]何胜林,张迎朝,高华,等.一种新的交会图流体识别方法在气层识别中的应用——以莺歌海盆地东方13区为例[J].石油天然气学报,2012,34(11):79-82,169.
[16]赵俊峰,田素月,李凤琴,等.白云质泥岩缝洞型储层测井评价技术[J].测井技术,2014,38(5):581-586.
[17]程希,惠晨,路云峰,等.岩性构造控制储层流体评价技术——以鄂尔多斯盆地CHN油田为例[J].西安石油大学学报(自然科学版),2017,32(6):29-34,43.
[18]孙建国.阿尔奇(Archie)公式:提出背景与早期争论[J].地球物理学进展,2007,22(2):472-486.
[19]杨克兵,王竞飞,马凤芹,等.阿尔奇公式的适用条件分析及对策[J].天然气与石油,2018,36(2):58-63.
[20]王协生,凌寿培.由径向电阻率求含水饱和度的方法及其应用[J].地球物理测井,1990,14(6):378-384.
[21]申本科.用微分法定量判别水淹层级别的条件[J].测井技术,1996,20(1):37-40.
[22]丁娱娇,邵维志,李庆合,等.一种利用阵列感应测井技术识别储层流体性质的方法[J].测井技术,2009,33(3):238-242.
[23]李功强,赵永刚,温伟.鄂尔多斯盆地镇泾油田长8段储层的判别标准[J].石油地质与工程,2010,24(5):16-19.
[24]侯科锋,田敏,张志刚,等.苏里格气田气水层快速识别方法研究[J].重庆科技学院学报(自然科学版),2017,19(2):69-74.
[25]黄若坤,齐婷婷,韩闯,等.塔中志留系沥青砂岩储层流体性质识别方法及应用[J].工程地球物理学报,2017,14(1):116-122.
[26]赵璐阳,孙越,赵自民,等.电阻率比值法在苏里格低电阻率气层测井解释中的应用[J].测井技术,2018,42(6):689-694.
[27]YANGKebing,LiShidong,WangHuijing.DiscussiononthemethodofevaluatingoilandwaterlayersbyusingratioofdeepresistivityandflushZoneresistivity[J].InternationalJournalofOil,GasandCoalEngineering,2019,7(1):7-12.
[28]申辉林,张静,刘正锋.利用阵列感应测井资料计算储层含水饱和度方法[J].石油地质与工程,2010,24(6):76-78.
[29]杨克兵,袁晓红,刘明波,等.使用电阻率比值法评价油水层的方法研究[J].天然气勘探与开发,2015,38(1):37-39,67.
[30]杨洪明,谢丽,马建海,等.用侧向与感应电阻率比值识别低渗透率储层流体性质[J].测井技术,2005,29(1):49-51.
[31]郑雷清.双电法测井在低电阻率储层流体性质识别中的应用[J].石油天然气学报(江汉石油学院学报),2006,28(3):304-306,451-452.
[32]张凤生,隋秀英,房国庆,等.复杂断块长井段薄互层储层及流体快速识别[J].测井技术,2018,42(2):156-162.
[33]张明禄,石玉江.复杂孔隙结构砂岩储层岩电参数研究[J].石油物探,2005,44(1):21-23,28.

相似文献/References:

[1]曹孟贤,蒋钱涛,向 超.地化录井定量解释方法在南海东部海域西江凹陷的应用[J].复杂油气藏,2021,14(01):36.[doi:10.16181/j.cnki.fzyqc.2021.01.007]
 CAO Mengxian,JIANG Qiantao,XIANG Chao.Application of quantitative interpretation method of geochemical logging in Xijiang Sag in eastern South China Sea[J].Complex Hydrocarbon Reservoirs,2021,14(03):36.[doi:10.16181/j.cnki.fzyqc.2021.01.007]
[2]金宝强,陈建波,陈红兵,等.渤海QHD油田馆陶组低阻油层成因分析[J].复杂油气藏,2021,14(03):48.[doi:10.16181/j.cnki.fzyqc.2021.03.009]
 JIN Baoqiang,CHEN Jianbo,CHEN Hongbing,et al.Genesis analysis of low resistivity reservoirs in Guantao Formation of QHD Oilfield in Bohai Bay[J].Complex Hydrocarbon Reservoirs,2021,14(03):48.[doi:10.16181/j.cnki.fzyqc.2021.03.009]
[3]秦鹏飞.老井复查技术在CB油田的应用[J].复杂油气藏,2022,15(01):64.[doi:10.16181/j.cnki.fzyqc.2022.01.013]
 QIN Pengfei.Application of old well reevaluation in CB Oilfield[J].Complex Hydrocarbon Reservoirs,2022,15(03):64.[doi:10.16181/j.cnki.fzyqc.2022.01.013]

备注/Memo

备注/Memo:
收稿日期:2020-04-08;修回日期:2020-06-10。第一作者简介:杨克兵(1967—),高级工程师,现主要从事测井解释及油气地质综合研究。E-mail:yjy_yangkb@petrochina.com.cn。基金项目:国家重大油气专项课题“华北地区中低煤阶煤层气规模开放区块优选评价”(2016ZX05041-003)。
更新日期/Last Update: 2020-09-30